Collaborative Data Science
Bayesian optimization is a strategy for the optimization of objective functions that are expensive to evaluate. It uses Bayes' theorem to create a probabilistic model of the function and makes decisions on where to sample next based on this model. This method is particularly valuable in scenarios involving supervised learning, where it can help refine models by systematically exploring hyperparameter spaces, selecting informative features, and optimizing model performance efficiently.
congrats on reading the definition of Bayesian Optimization. now let's actually learn it.