Computer Vision and Image Processing
Bayesian optimization is a probabilistic model-based approach for optimizing objective functions that are expensive to evaluate. This method uses a surrogate model, often a Gaussian process, to predict the function's behavior and make decisions about where to sample next. The aim is to find the maximum (or minimum) of the objective function in fewer iterations, which is particularly useful in supervised learning scenarios where each evaluation can be costly.
congrats on reading the definition of Bayesian Optimization. now let's actually learn it.