Linear Algebra for Data Science
Mean squared error (MSE) is a common measure used to evaluate the accuracy of a model by calculating the average of the squares of the errors—that is, the difference between predicted values and actual values. It serves as a foundational concept in various fields such as statistics, machine learning, and data analysis, helping in the optimization of models through methods like least squares approximation and gradient descent. MSE is particularly valuable for assessing model performance and ensuring that predictions are as close to actual outcomes as possible.
congrats on reading the definition of Mean Squared Error. now let's actually learn it.