Images as Data
Mean Squared Error (MSE) is a statistical measure used to evaluate the quality of an estimator or a predictive model by calculating the average of the squares of the errors, which are the differences between predicted and actual values. It's essential for understanding how well algorithms perform across various tasks, such as assessing image quality, alignment in registration, and effectiveness in learning processes.
congrats on reading the definition of Mean Squared Error. now let's actually learn it.