Intro to Probability
Homoscedasticity refers to a situation in statistics where the variance of the errors or the residuals in a regression model remains constant across all levels of the independent variable(s). This property is crucial for valid statistical inference, as it ensures that the model's predictions are reliable and not influenced by unequal variance at different values. When homoscedasticity is violated, it can lead to inefficient estimates and affect the validity of hypothesis tests.
congrats on reading the definition of Homoscedasticity. now let's actually learn it.