Advanced Quantitative Methods
Homoscedasticity refers to the property of a dataset in which the variance of the residuals, or errors, is constant across all levels of the independent variable(s). This characteristic is crucial for valid inference in regression analysis, as it ensures that the model's predictions are reliable. When homoscedasticity holds, the spread of the residuals is uniform, leading to better model fit and accurate hypothesis testing. Violation of this assumption can impact the results, causing inefficiencies and biased estimates.
congrats on reading the definition of Homoscedasticity. now let's actually learn it.