Theoretical Statistics
The posterior distribution is the probability distribution that represents the uncertainty about a parameter after taking into account new evidence or data. It is derived by applying Bayes' theorem, which combines prior beliefs about the parameter with the likelihood of the observed data to update our understanding. This concept is crucial in various statistical methods, as it enables interval estimation, considers sufficient statistics, utilizes conjugate priors, aids in Bayesian estimation and hypothesis testing, and evaluates risk through Bayes risk.
congrats on reading the definition of Posterior Distribution. now let's actually learn it.