Theoretical Statistics
A maximum likelihood estimator (MLE) is a statistical method used to estimate the parameters of a probability distribution by maximizing the likelihood function, which measures how well a particular set of parameters explains the observed data. MLE is crucial for understanding sampling distributions, as it provides a way to derive estimates from sample data. This approach also ties into point estimation, as it offers a method for obtaining a single best estimate of an unknown parameter based on observed data, while its relationship with the Cramer-Rao lower bound establishes its efficiency in estimation. Additionally, discussions of admissibility and completeness often address whether MLEs are optimal under certain conditions, enhancing the understanding of their properties in decision theory and estimation theory.
congrats on reading the definition of Maximum Likelihood Estimator. now let's actually learn it.