Collaborative Data Science
Multicollinearity refers to the phenomenon in statistical modeling where two or more predictor variables in a regression model are highly correlated, making it difficult to determine their individual effects on the response variable. This issue can lead to unstable estimates of coefficients, inflated standard errors, and unreliable statistical tests, which complicates inferential statistics and regression analysis. Understanding and addressing multicollinearity is essential for ensuring the validity of conclusions drawn from multivariate analyses and for effective feature selection and engineering.
congrats on reading the definition of multicollinearity. now let's actually learn it.