Statistical Prediction
Cross-validation is a statistical technique used to assess the performance of a predictive model by dividing the dataset into subsets, training the model on some of these subsets while validating it on the remaining ones. This process helps to ensure that the model generalizes well to unseen data and reduces the risk of overfitting by providing a more reliable estimate of its predictive accuracy.
congrats on reading the definition of cross-validation. now let's actually learn it.