Statistical Prediction
The bias-variance tradeoff is a fundamental concept in machine learning that describes the balance between two types of errors when creating predictive models: bias, which refers to the error due to overly simplistic assumptions in the learning algorithm, and variance, which refers to the error due to excessive complexity in the model. Understanding this tradeoff is crucial for developing models that generalize well to new data while minimizing prediction errors.
congrats on reading the definition of bias-variance tradeoff. now let's actually learn it.