Machine Learning Engineering
Mean Absolute Error (MAE) is a metric that measures the average magnitude of errors in a set of predictions, without considering their direction. It calculates the average of the absolute differences between predicted and actual values, providing a clear indication of prediction accuracy in both regression and classification scenarios. This metric is crucial for evaluating model performance, monitoring predictive accuracy, and understanding error distribution in various applications, including time series forecasting.
congrats on reading the definition of Mean Absolute Error. now let's actually learn it.