Machine Learning Engineering
Federated learning is a machine learning approach that allows models to be trained across multiple decentralized devices while keeping the data localized on those devices. This method enhances privacy by ensuring that sensitive data never leaves its source, making it particularly relevant in scenarios where data security is paramount, like healthcare and finance. It also aligns with the principles of distributed computing by leveraging the computational power of various devices rather than relying on a centralized server.
congrats on reading the definition of Federated Learning. now let's actually learn it.