Machine Learning Engineering
The f1 score is a performance metric used to evaluate the effectiveness of a classification model, particularly in scenarios with imbalanced classes. It is the harmonic mean of precision and recall, providing a single score that balances both false positives and false negatives. This metric is crucial when the costs of false positives and false negatives differ significantly, ensuring a more comprehensive evaluation of model performance across various applications.
congrats on reading the definition of f1 score. now let's actually learn it.