Machine Learning Engineering
Bagging, short for bootstrap aggregating, is an ensemble learning technique that aims to improve the stability and accuracy of machine learning algorithms by combining multiple models. This method involves creating multiple subsets of the training dataset through random sampling with replacement, training a model on each subset, and then averaging or voting on the predictions to produce a final result. This approach helps reduce overfitting and increases the robustness of the model.
congrats on reading the definition of Bagging. now let's actually learn it.