Bayesian Statistics
The Central Limit Theorem (CLT) states that, regardless of the original distribution of a dataset, the sampling distribution of the sample mean will tend to be normally distributed as the sample size becomes larger. This theorem is foundational because it allows statisticians to make inferences about population parameters using sample statistics, even when the underlying distribution is not normal. The CLT connects closely with probability distributions and plays a crucial role in methods like Monte Carlo integration by enabling the approximation of complex distributions.
congrats on reading the definition of Central Limit Theorem. now let's actually learn it.